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Jitter Analysis of CBR Streams in Multimedia
Networks ∗

Jia-Shiang Jou and John S. Baras
Department of Electrical and Computer Engineering

and the Institute for Systems Research
University of Maryland, College Park, MD 20742 USA

{jsjou, baras}@isr.umd.edu

Abstract— The performance of real time applications
such as video and voice streams relies on packet delay jit-
ter. Large delay jitter causes buffer overflow or underflow
at the receiver end and the user encounters interrupts.
The delay jitter is mainly due to the perturbation of
background traffic in the bottleneck router. Fulton and Li
[12] provide an analytical approximation for the first-order
and second-order statistics of delay jitter. However, their
analysis is based on a Markovian model of the background
traffic, which is not quite suitable for Internet traffic
and requires lots of computational effort. We propose an
efficient method to predict the jitter variance of a CBR
(constant-bit rate) connection based on the wavelet model
of the background traffic. The wavelet analysis extracts the
statistical properties of background traffic and the analysis
result can be used to predict an upper bound for the jitter
variance of the CBR connection.

Index Terms— Delay Jitter, Multifractal, Wavelet.

I. INTRODUCTION

REAL time applications such as voice and video
streams have become exceedingly popular in recent

years. The performance of real time connections is very
sensitive to the connection quality such as the packet
jitter in the network. The traffic behavior of a real time
application is usually quite smooth and stable. After
entering the network, the real time packet stream is
multiplexed and shares the link bandwidth with the
background traffic. Hence, the packet jitter is mainly
due to the perturbation of the background traffic in the
bottleneck router. Most jitter analysis methods [12] [4]
[21] are based on Markovian models of the background
traffic. However, recent studies [25] [24] [20] [14] on
Internet traffic have shown that the aggregate background
traffic driven by TCP is long range dependent and self-
similar. Wavelet analysis [29] [13] also demonstrates that
background traffic is monofractal (self-similar) at large

(∗) Research partially supported by DARPA contract No. N66001-
00-C-8063.

time scales and multifractal at small time scales. The
traditional Markovian traffic model is unable to capture
this multifractal behavior well and is not a proper model
for performance analysis [19] [20]. In order to predict
the jitter more efficiently and accurately, we applied
wavelet analysis to characterize the background traffic
and propose an upper bound for the jitter variance of a
constant-bit rate connection.

The arrangement of this paper is as follows. In the
next section, we briefly introduce the wavelet analysis for
traffic and show the multifractal behavior of a real traffic
trace. In section 3, the background traffic is characterized
by the Logscale diagram. An approximation of queue
length distribution is derived from properties of wavelets
and the Logscale diagram. The upper bound of CBR
jitter variance is developed in section 4. Simulation and
analysis results are demonstrated in section 5. Section 6
contains conclusions and suggestions for future work.

II. WAVELET ANALYSIS OF THE BACKGROUND

TRAFFIC

The wavelet technique is a multi-resolution analysis
tool widely used in signal processing and data analy-
sis [7] [5]. It has remarkable advantages in analyzing
stochastic processes with long range dependence [1] [23]
[2] [30] [16] [15] [3]. For instance, wavelet analysis can
eliminate the effect of deterministic trends hidden in ran-
dom processes if the wavelet function is chosen properly.
Given the scaling function φ0 and the mother wavelet ψ0,
the discrete wavelet transform of the continuous time
process X(t) is defined as follows:

Definition (Discrete Wavelet Transform) [23]: Given
the scaling function φ0 and the mother wavelet ψ0, the
approximation coefficients aj,k and detail coefficients
dj,k of the discrete wavelet transform of the processX(t)
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are defined as

aj,k :=
∫ ∞

−∞
X(t)φj,k(t)dt (1)

dj,k :=
∫ ∞

−∞
X(t)ψj,k(t)dt, (2)

where

φj,k(t) := 2−j/2φ0(2−jt− k) (3)

ψj,k(t) := 2−j/2ψ0(2−jt− k). (4)

It can be shown that the φj,k and ψj,k form an orthonor-
mal basis. X(t) has the following representation

X(t) =
∑

k

a0,kφ0,k(t) +
∞∑

j=0

∑
k

dj,kψj,k(t). (5)

For the discrete time process Xi, i = 0, 1, 2, ..., the
discrete wavelet transform can be implemented by the
fast pyramidal algorithm [26]. To understand the behav-
ior of the traffic Xi, we are more interested in the detail
process of the discrete wavelet transform dj,k. It is well
known that the Internet traffic is long range dependent.
Many studies [8] [17] [19] [6] have shown that this long
range dependence property plays an important role in
network performance.

Definition (Long Range Dependence) [18]:A sta-
tionary finite-variance process Xi displays long range
dependence with parameter α if its spectral density S(ω)
satisfies

S(ω) ∼ Cf |ω|−α as ω → 0, (6)

where 0 < α < 1 and Cf is a positive constant. It
also implies that the autocovariance function r(k) :=
E[(Xi − EXi)(Xi+k − EXi)] satisfies

r(k) ∼ Crk
α−1 as k → ∞, (7)

where Cr = Cf2Γ(1−α)sin(πα/2), and Γ denotes the
Gamma function.

The mother wavelet ψ0(t) is usually a bandpass func-
tion between ω1 and ω2 in the frequency domain. Note
that the detail coefficient dj,k is the output process of the
corresponding bandpass filter. The square of the detail
process d2

j,k roughly measures the amount of energy
around the time t = 2jk∆ and the frequency 2−jω0,
where ∆ is the unit time interval and ω0 := ω1+ω2

2 .
Proposition [18]: If a stationary finite-variance pro-

cess Xi has long range dependence with parameter α,
then the corresponding detail coefficients dj,k have the
following property:

log2E[d2
j,·] ≈ jα+ log2C(α,ψ0). (8)

Note that C(α,ψ0) is independent of the variable j.

This property suggests that the parameter α can be
estimated by the slope of the log2E[d2

j,·] v.s. j plot. This
plot is named the Logscale diagram. One advantage of
wavelet analysis is that even when the original process
Xi has long range dependence, its wavelet transform
dj,k still has short range dependence if the number of
vanishing moments N of the mother wavelet ψ0(t) is
chosen large enough ( N > α/2 ).

Definition [28]: The number of vanishing moments N
of the mother wavelet ψ0(t) is defined as:∫

tkψ0(t) ≡ 0, k = 0, 1, 2, ..., N − 1. (9)

Proposition [9] [18]: If the number of vanishing
moments N > α/2, then dj,k is stationary and no longer
exhibits long range dependence but only short range
dependence.

E[dj,kdj′,k′] ≈ |2jk − 2j′
k′|α−1−2N as |2jk − 2j′

k′| → ∞,

where j �= j ′ and k �= k′. This implies the higher N , the
smaller the correlation.

Figure 1 is the Logscale diagram of a real traffic trace.
Veitch and Arby [27] developed an asymptotically unbi-
ased and efficient joint estimator for the parameter α and
C(α,ψ0). They also provided a closed-form expression
for the covariance matrix of the estimator and showed its
accuracy. The Logscale diagram not only demonstrates
the long range dependence property of the traffic but also
extracts the second order statistics at every time scale.
In this paper, we characterize the traffic in terms of the
traffic mean rate and the Logscale diagram. With the
Logscale diagram, we are able to predict the overflow
probability and the jitter variance at the bottleneck router.
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Fig. 1. Logscale diagram of a real trace

III. TRAFFIC MODEL AND OVERFLOW PROBABILITY

The wavelet analysis has many advantages in
parameter estimation and traffic analysis. The
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background traffic in this paper is characterized
by the Logscale diagram and mean rate m. An upper
bound of the overflow probability is provided by using
the properties of wavelets.

Lemma Let aj,k and dj,k be the approximation coef-
ficients and the detail coefficients of the Haar wavelet.
We have the following relations:

aj,2k =
aj+1,k + dj+1,k√

2
, (10)

aj,2k+1 =
aj+1,k − dj+1,k√

2
. (11)

With the uncorrelated assumption of aj,k and dj,k for
every j, we have

V ar[aj] =
V ar[aj+1] + V ar[dj+1]

2
. (12)

Note that the plot log2 V ar[dj ] v.s j is the Logscale
diagram. On the other hand, let Aj be the total arrival
bytes in the interval [0, 2j∆). From the definition of Haar
wavelet:

Aj = aj2j/2. (13)

Thus, the variance of workload V ar[Aj ] can be
computed recursively for all j by using the Logscale
diagram.

Lemma Given the Logscale diagram log2V ar[dj ] and
the variance of A0, the variance of Aj , j = 1, 2, ... is

V ar[Aj ] = 2jV ar[aj ]

V ar[aj] = 2V ar[aj−1] − V ar[dj].

Assuming that Aj has the Lognormal distribution for
all j with mean Mj := E[Aj ] = m2j∆ and variance
Vj := V ar[Aj ], the probability density function of the
Lognormal distribution is:

fAj
(x) :=

1
xσj

√
2π

exp[−(lnx− µj)2

2σ2
j

], x > 0. (14)

Since the rth moment of the Lognormal distribution has
a closed-form:

EAr
j = exp(rµj +

r2σ2
j

2
), (15)

the parameters µj and σj can be easily calculated by the
following equations:

σ2
j = ln(

M2
j + Vj

M2
j

), (16)

µj = ln(Mj) −
σ2

j

2
. (17)
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Fig. 2. The CCDF of workload Aj j = 1, 2, ..., 7 and the fitted
Lognormal distribution
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Fig. 3. The CCDF of workload Aj j = 8, 2, ..., 14 and the fitted
Lognormal distribution

Figure 2 and Figure 3 are the complementary CDF
Pr[Aj > x] of the real traffic trace and the corre-
sponding Lognormal distribution with the parameters
estimated from the Logscale diagram.

Consider a FIFO queue with an infinite buffer size
and the service rate C (bytes/∆). Assuming that the
distribution of Aj is known for all j, Riedi [22] proposes
an upper bound for the overflow probability P [Q > b].

Lemma [22] Assume that Ej := {Aj < b + C2j∆}
are independent to each other and the r.v. Q is the queue
length in steady state. An upper bound of the overflow
probability of a FIFO queue is:

P [Q > b] = 1 − P [Q ≤ B] ≈ 1 − P [∩K
j=1Ej]

= 1 − P [E0]
K∏

j=1

P [Ej |Ej−1, ..., E0]

≤ 1 −
K∏

j=0

P [Ej ]

= 1 −
K∏

j=0

P [Aj < B + C2j∆], (18)
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where K is the maximum octave and 2K∆ is the
maximum time scale.

Figure 4 shows simulation results of the queue length
distribution and the upper bound. The simulation result
shows that this upper bound provides a good approxi-
mation of the steady state queue length distribution. We
will apply this result to predict the jitter variance of a
CBR traffic at the bottleneck router.
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 Q
 >

 q
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Prediction 

Fig. 4. The queue length distribution with utilization ρ = 0.4.

IV. UPPER BOUND FOR JITTER VARIANCE

In this section, we propose an efficient method to
predict the jitter variance of a CBR connection based
on the Logscale diagram of the background traffic at
the bottleneck router. Consider the following scenario.
In Figure 5, there is one CBR process sharing the
bandwidth and buffer with the background traffic at a
FIFO queue.

CB

Background Traffic

CBR

2^n∆ I i+1 I i

Fig. 5. The target process and the background traffic

  T

d0 d1 d2

I0 I1

  T   T   T

Fig. 6. The arrival and departure time of CBR traffic

The CBR process periodically sends out a small packet
every 2n∆sec. Note that the ∆ is the finest time resolu-
tion in the wavelet analysis and we set ∆ = 0.001sec in

this paper. The packet size of the CBR process is set to
be small enough so that its mean rate is negligible to the
bandwidth at the bottleneck link. The statistical property
of the background traffic is described by its mean rate m
(bytes/∆) and the Logscale diagram Lj := log2 V ar[dj ]
of the wavelet analysis. The delay jitter of CBR is
defined as follows:

Definition: Let the random sequence Ii be the interde-
parture times of the target process. The jitter is defined
as the difference of two consecutive interdeparture times:

Ji := Ii+1 − Ii. (19)

We also define An,i as the total arrival bytes of the
background traffic in the ith time slots. The duration of
each time slot is T := 2n∆ sec.

Lemma: Let the current time be t = iT and assume
that the current queue length is q(t) ≥ b := 2n+1∆(C−
m). The conditional variance of jitter is

V ar[J |q(t) ≥ b] =
1
C2

V ar[(An,i+1 −An,i)]. (20)

Proof: Without loss of generality, let the CBR packets
arrive at times 0, T , and 2T , which have queuing delay
d0, d1 and d2, respectively. As shown in Figure 6, the
total arrival bytes of the background traffic in the ith time
slot (t ∈ [iT, (i+1)T )) is An,i. Since the current length
q(0) ≥ b is quite large, it is reasonable to say that the
output link is always busy during the 0th and 1th time
slots. Moreover, the buffer size is infinite so that there
is no packet loss event. The Lindley equation:

q(t) = max0≤s≤t[A(t) −A(s) − C(t− s)],∀t ≥ 0 (21)

can be simplified as

q((i+ 1)T ) = q(iT ) +An,i −CT. (22)

Hence, the packet delay di = q(iT )/C and the interde-
parture time is

Ii = T + di+1 − di

= T +
q((i+ 1)T ) − q(iT )

C

=
An,i

C
. (23)

The jitter variance under this condition is

V ar[J |q(t) ≥ b] = V ar(Ii+1 − Ii)

=
V ar[(An,i+1 −An,i)]

C2
. (24)

According to the definition of wavelet analysis, one
may easily obtain the value of V ar[(An,1 −An,0)] from
the Logscale diagram Lj

E[d2
j+1,k] =

E[(Aj,2k+1 −Aj,2k)2]
2j+1

, (25)
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for every j and k.
Hence, the conditional jitter variance of the CBR

process is

V ar[J |q(t) ≥ b] =
2n+1+Ln+1

C2
. (26)

On the other hand, if the current queue length is small
(q(t) < b), we assume that there is at least one idle server
event happening in the next two time slots. The simple
relations of eq.(22) and eq.(23) do not hold. Since there
is at least one idle event in this period, the sequence of
interdeparture times Ii and the sequence of packet delays
di can be treated as uncorrelated random sequences
respectively. We have the following approximation:

V ar[J |q(t) < b] = V ar[Ii+1 − Ii] ≈ 2V ar[Ii]

= 2V ar[di+1 − di] ≈ 4V ar[di]

≤ 4
C2

max
0≤j≤n

V ar[(Aj − C2j∆)+].

(27)

Lemma: Let A be the Lognormal random variable
with parameter (µ, σ) and d > 0 be any real number,
we have

E[(A− d)+] =
eµ+σ2/2

2
erfc(

ln d− µ− σ2

√
2σ

)

− dF̄ (d) (28)

E[((A− d)+)2] =
e2µ+2σ2

2
erfc(

ln d− µ− 2σ2

√
2σ

)

− deµ+σ2/2erfc(
ln d− µ− σ2

√
2σ

)

+ d2F̄ (d), (29)

where F̄ (d) := Pr[A > d].
The probability of Pr[q(t) ≥ b] is based on the pre-

diction of the steady state queue length distribution. We
applied Riedi’s approach [22] to calculate the overflow
probability.

Proposition Let the r.v. Q be the queue length in
steady state. From eq. (26) (27) and (18), there is an
upper bound of the jitter variance of the CBR traffic at
the bottleneck router:

V ar(J) ≤ V ar(J |Q ≥ b)Pr[Q ≥ b]

+V ar(J |Q < b))Pr[Q < b]. (30)

V. SIMULATION RESULTS

The network topology in our experiment is the simple
dumbbell with a single bottleneck link. One side of the
bottleneck link consists of 800 web clients, each client
sends a web request and has an Exponential think time
with mean 50sec after closing the current session. The

other side has 800 web servers. The server is running
HTTP 1.1 protocol and has a Pareto file size distribution
with parameters (K=2.3Kbytes, α=1.3). The propaga-
tion delay of each server link is uniformly distributed
and the mean round-trip time is about 128ms. Note that
the mean arrival rate of the web (background) traffic is
around 1.2Mbps.

A. Jitter at a FIFO Queue

Figure 7 compares the predicted jitter standard devia-
tion with the simulation results. The target CBR process
has fixed interarrival times 2n∆ and n = 3, 4, .., 8.
The link utilization is about 0.4, 0.6 and 0.8 with the
corresponding bandwidth C = 3.0, 2.0 and 1.5Mbps
respectively.

The simulation results show that our prediction
method indeed provides a tight upper bound even when
the CBR interarrival time 2n∆ is getting larger.
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Fig. 7. The standard deviation of delay jitter std(J) v.s. n with a
FIFO queue

B. Jitter at a RED Queue

We replace the FIFO queue by an adaptive RED queue
at the bottleneck router. The adaptive RED queue [11]
[10] will keep the average queue length located in a
desired region by randomly dropping the TCP packets.
Since the queue length is in the desired region, the
link has a 100% utilization and no idle event happened.
Hence, the jitter variance is bounded by equation (26).

Figure 8 shows that the prediction method also pro-
vides a tight bound for the jitter variance when a different
queuing policy such as RED is employed.

VI. CONCLUSIONS

The performance of video and voice streams mainly
depends on the delay jitter in the network. Recent studies
show that Internet traffic is multifractal, which can not be
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Fig. 8. The standard deviation of delay jitter std(J) v.s. n with a
RED queue

modeled well by traditional Markovian models. Instead
of using a Markovian approach, we applied wavelet
analysis to analyze the background traffic at the bot-
tleneck router. The second order statistical property of
the background traffic is characterized by the Logscale
diagram. Based on properties of wavelets and some
reasonable assumptions, we provide an efficient and
accurate method to predict the jitter variance of CBR
traffic. Our simulation results also show that this method
works well with a different queuing policy such as RED.
In future work, we are considering the effects of finite
buffer size in the FIFO queue.
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